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Abstract. Even though tropical cyclones (TCs) are well documented during the intense part of their lifecycle until they start

to evanesce, many physical and statistical properties governing them are not well captured by gridded reanalysis or simulated

by earth system models. Thus, the tracking of TCs remains a matter of interest for the investigation of observed and simulated

tropical cyclones. Two types of cyclone tracking schemes are available. On the one hand, there are trackers that rely on physical

and dynamical properties of the TCs and user-prescribed thresholds, which make them rigid. They need numerous variables5

that are not always available in the models. On the other hand, there are trackers leaning on deep learning which, by nature, need

large amounts of data and computing power. Besides, given the number of physical variables needed for the tracking, they can

be prone to overfitting, which hinders their transferability to climate models. In this study, the ability of a Random Forest (RF)

approach to track TCs with a limited number of aggregated variables is explored. Hence, the tracking is considered as a binary

supervised classification problem of TC-free (zero) and TC (one) situations. Our analysis focuses on the Eastern North Pacific10

and North Atlantic basins, for which, respectively, 514 and 431 observed tropical cyclone track records are available from the

IBTrACS database during the 1980-2021 period. For each 6-hourly time step, RF associates TC occurrence or absence (1 or

0) to atmospheric situations described by predictors extracted from the ERA5 reanalysis. Then situations with TC occurrences

are joined for reconstructing TC trajectories. Results show the ability and performance of this method for tracking tropical

cyclones over both basins, and good temporal and spatial generalization as well. RF has a similar TC detection rate as trackers15

based on TCs’ properties and significantly lower false alarm rate. RF allows us to detect TC situations for a range of predictor

combinations, which brings more flexibility than threshold based trackers. Last but not least, this study shed light on the most

relevant variables allowing to detect tropical cyclone.

1 Introduction

Tropical cyclones (TCs) are among the most devastating extreme events in terms of casualties and economic losses (Centre20

for Research on the Epidemiology of Disasters, 2021; UN Office for Disaster Risk Reduction, 2020). Several conditions are

necessary for their formation. TC genesis requires warm sea surface temperatures to draw its energy from, low wind shear

and ample humidity to ensure a stable vortex while maintaining the convection and adequate influence from the Coriolis force

combined with a pre-existing low-pressure disturbance in the atmosphere. Thus, a vortex is created around the depression

with strengthening winds, and fuelled by ascending humid air (Emanuel, 2003; Weaver and Garner, 2023). It becomes a self-25
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sufficient system that continuously draws energy from the ocean until reaching an unfavourable environment or land (the

landfall). Then, the TC loses its energy, which causes its rapid dissipation (Kepert, 2010; Rüttgers et al., 2019).

Understanding how human-induced climate change influences TC activity remains a challenging scientific issue (Knutson

et al., 2010; Walsh et al., 2016, 2019). Given the incomplete theoretical understanding of TCs and the limited observation

timespan, the study of the changes in their properties relies on model simulations (Knutson et al., 2019, 2020). Despite the30

tremendous effort made to increase the resolution of the Earth System Models (around 100 km for the last generation of

models), it is still too low to simulate realistic TCs (Camargo and Wing, 2016; Roberts et al., 2020). Leveraging the recent

advances in computational resources, a handful of global simulations with atmospheric spatial resolutions between 25 and 50

km are now available and reveal a clear improvement in simulating TCs (Murakami et al., 2015; Walsh et al., 2015; Roberts

et al., 2020; Bourdin et al., 2024).35

To study TCs simulated by global climate models, we need algorithms to objectively detect them. Such algorithms, known as

TCs trackers, are traditionally based on physical and dynamical properties of cyclones (see Zarzycki and Ullrich, 2017; Bourdin

et al., 2022, and the reference therein for details about different trackers). These algorithms identify tropical cyclone points and

connect them to reconstruct TC tracks employing thresholds applied to variables. Depending on the variables involved in the

tracking process, Bourdin et al. (2022) defined two categories of trackers: physics-based and dynamics-based. Physics-based40

trackers rely on thermodynamic properties of a tropical cyclone, such as the local minimum sea-level pressure combined with

a warm-core (temperature anomaly or a geopotential thickness). Dynamics-based trackers rely on dynamical variables such as

vorticity or other derivatives of the velocity. Both usually include an intensity criterion to discriminate the systems.

The thresholds used in these trackers that are tracking-scheme specific and subjective, and may also depend on the particular

TC formation basin as well as on the TC categories (Camargo and Zebiak, 2002; Befort et al., 2020). This may lead to a45

potential inability of tracking schemes to generalize to other domains or data from sources other than those used to calibrate

the thresholds (Raavi and Walsh, 2020). In order to avoid subjective choice of thresholds and make the tracker more flexible

in identifying cyclonic situations, this study focuses on data-driven algorithms, the so-called machine learning algorithms.

Indeed, these types of algorithms rely on data to identify cyclones based on different combinations of variables, independent

of user prescribed thresholds.50

For instance, the detection skills of three machine learning approaches (Decision Trees, Random Forest, Support Vector

Machines) and a model based on Linear Discriminant Analysis have been compared for satellite data in Kim et al. (2019a).

Machine learning approaches showed better skill hit rates, while the linear approach showed lower false alarm rates. Among

machine learning approaches, neural network based deep learning approaches have lately gained attention for TC detection.

They have been implemented through segmentation, edge detection, circle fitting, and comprehensive decision for satellite55

images (Kumler-Bonfanti et al., 2020; Wang et al., 2020; Nair et al., 2022). Kim et al. (2019b) leveraged a Convolutional Long

Short-Term Memory network to detect and forecast hurricane trajectories on Community Atmospheric Model v5 simulation

data.

However, these approaches use satellite and model data that can be biased and are mainly focused on shape detection in

images. As such, they are not comparable to the physics-based trackers previously mentioned, which have been developed60
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from reanalysis and evaluated with respect to observed data and focus on TC-related physical processes. For instance, in

Bourdin et al. (2022), trackers were applied to the fifth generation of ECMWF Reanalysis (ERA5, Hersbach et al., 2020) and

evaluated with respect to the observational record of the International Best Track Archive for Climate Stewardship (IBTrACS,

Knapp et al., 2010). In that context, Gardoll and Boucher (2022) and Accarino et al. (2023) have developed convolutional

neural network (CNN) architectures to detect cyclones. They respectively used eight and six 6-hourly variables extracted from65

ERA5 in their CNN. The added value of such approaches is the ability to constrain the detection with cyclone record provided

by IBTrACS, by associating each set of 6-hourly data field to the occurrence (absence or presence) of a cyclone (called labelling

in machine learning). This makes tracking TCs a supervised classification problem.

The issue with the use of the latter type of algorithms in the case of TC detection is that the number of TC-related atmospheric

situations is very low compared to TC-free situations. These algorithms trained with such data will learn from a larger diversity70

of TC-free situations and thus will be more accurate and inclined to rule for TC-free situations and, therefore, biased towards

them. In addition, neural network based algorithms need, by essence, huge amounts of data, which can sometimes be qualified

as data greedy. This calls for strategies to equilibrate TC/TC-free ratio while keeping enough data to obtain a robust tuning

of the CNN. Gardoll and Boucher (2022) reduced variable fields in the North Atlantic to 8◦×8◦ windows around the eye of

the cyclone for every time step with a TC and sampled for each one of these windows two TC-free which drastically reduce75

the data sample (28 521 images). This potentially leads to overfitting and limits the generalizability of the tracker by reducing

the diversity of TC-free situations and the spatial variability of the potential TC location due to the choice windows around

past TC locations. Only binary properties (TC/TC-free) of the tracker were evaluated in Gardoll and Boucher (2022). Accarino

et al. (2023) considered non-overlapping 10◦×10◦ windows over the whole joint North Pacific and Atlantic basins and rather

opted for a data augmentation procedure of TC situations to reach a 50/50 ratio (425 358 images). Their CNN-based tracker80

produced comparable performance as the physics-based trackers in terms of TC track detection but generated larger numbers

of false alarms, which is not desirable. Finally, this type of method processes large amounts of data, which calls for huge

computing power (typically GPU in Gardoll and Boucher (2022) and High Performance Computing infrastructure in Accarino

et al. (2023)). Both studies did not provide physical interpretation of the performance of the tracker.

In this study, the objective is to leverage and adapt a well-known and proven method, the Random Forest (RF, Breiman,85

2001), to a TC tracking problem by associating a given atmospherical situation described by a limited set of predictors to the

presence or the absence of TCs. This choice has been made by considering computing cost, the need for several meteorological

variables, and the ultimate goal of such a tracker being the tracking of TC in future climate simulations. Indeed, having

many variables implies potential overfitting and impeded interpretation of the results and lower transferability to future climate

simulations. Random forest provides interpretation means and lower computational costs. Higher data frugality will be achieved90

by considering simple variable statistics instead of entire variable fields, which will potentially improve the transferability of

the tracking to climate simulations.

The paper is organized as follows: Section 2.1 describes the datasets used and its pre-processing. The RF-based tracker,

the experimental setup and the evaluation metrics are described in Section 2.2. Section 3 presents the results of the tracker
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developed in this paper. Sensitivity tests are provided in Section 4 and Section 5 gives a summary of the main conclusions from95

this work, while also sketching relevant perspectives.

2 Material and Method

2.1 Data

This section describes the data sets on which this study is based.

2.1.1 International Best Track Archive for Climate Stewardship, IBTrACS100
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Figure 1. a) Eastern North Pacific (ENP) and the North Atlantic (NATL) basins, with the TCs tracks and the associated wind intensity (in m

s−1) used in this study. b) Boxes patching both basin. Only one out of every two box are pictured for clarity reasons.

In this study, the IBTrACS “since 1980” set (Knapp et al., 2018) was retrieved. In the following, two basins are going to be

considered: the eastern North Pacific (ENP) and the North Atlantic (NATL) (cf. blue contours in Fig. 1 a)). In these basins,

the U.S. National Hurricane Center (NHC) is responsible for reporting tropical cyclones’ best tracks. In total, 42 cyclonic

seasons between 1980 and 2021 (from June to November in the Northern Hemisphere) are considered. At the time of this

study, tracks in 2022 and later are removed, since some of them are still labelled provisional. Those labelled “spur” are also105

removed. Track records that are not providing maximum wind and minimum pressure are also removed. Finally, tracks that

do not reach the Tropical Storm (TS) stage are also removed. This is decided according to the storm category given by the
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values of the minimum sea level pressure Pmin and the 10 min near-surface sustained wind u10. Based on Table 2 of Bourdin

et al. (2022), TS stage is reached when Pmin ≤ 1005 hPa and u10 ≥ 16ms−1. Tropical Cyclones (TC) stage is reached when

Pmin ≤ 990 hPa and u10 ≥ 29ms−1. Once processed, the ENP and NATL basins respectively contain 514 and 431 tracks at a110

6-hourly timestep.

2.1.2 ERA5

Our main objective is to associate climate variables and determine the main drivers that contribute to the formation and strength-

ening of TCs during their lifetime. Hourly estimates of atmospheric variables are provided by ERA5 at 0.25◦×0.25◦ from 1979

to the present day. While having similar performances as JRA-55 or NCEP-CFSR for a range of metrics (Zarzycki et al., 2021;115

Roberts et al., 2020), ERA5 does not perform any specific assimilation for TCs (Zarzycki et al., 2021). This motivated our

choice to use ERA5 to evaluate the tracker developed in this paper. 6-hourly data from 1980 to 2021 are extracted, consistent

with the period of the IBTrACS data. The choice of using 6-hourly data stems from the overall objective to use the tracker

on climate model simulations, whose output is very rarely provided at higher temporal resolution. Five variables have been

extracted from ERA5:120

– the mean sea level pressure, MSLP (in hPa),

– the 10-m wind intensity, UV10 (in m s−1),

– the total column water vapour, TCWV (in kg m−2),

– the relative vorticity at 850 hPa pressure level, RV850 (s−1),

– the geopotential thickness between 300 and 500 hPa pressure level, THZ300_Z500 (in m).125

These variables have been selected based on their ability to characterize specific physical properties of TCs and on their wide

availability in climate model simulations output. In particular, TCs have a warm core, with the most intense winds found close

to the surface. TCs are structured with an eye at the centre, an eyewall, and spiral convective rainbands around them. TCs are

driven by diabatic processes, meaning that their energy comes from extracting oceanic moisture that releases latent heat once

condensed in the upper troposphere. Considering this, MSLP characterizes the spatially coherent low-pressure structure (the130

eye and the eyewall), UV10 the strong surface wind, TCWV the moister and the potential for rain, RV850 the TC vortex and

THZ300_Z500 the upper-level warm core associated with the local depression in the TCs.

2.1.3 Data-set preparation

Several steps are followed to prepare the data. First, both basins are patched by 20◦×10◦ overlapping boxes (see shaded blue

boxes in Fig. 1b)), totalling 20 and 16 boxes respectively for ENP and NATL. This is done in order to deal with cases where135

two or more TCs occur at the same time in a given basin. Then, for every box, a vector of zeros and ones is constructed: every
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timestep, a box containing an IBTrACS point reaching TS intensity (Pmin ≤ 1005 hPa and u10 ≥ 16ms−1) is coded 1, and 0

otherwise. Thus, the TC tracking problem is handled as a binary classification problem.

Then, ERA5 predictors associated to these binary vectors are built as follows: instead of considering the whole variable field

within a box, only four statistics of that field are considered: minimum, mean, maximum and standard deviation. Thus, for a140

given timestep, the atmospheric situation within a box is described by a set of 20 predictors (5 climate variables × 4 statistics).

Those predictors are labelled with the physical variable name attached to the statistic corresponding suffix (min, mean, max,

sd). For instance, MSLPmin, MSLPmean, MSLPmax and MSLPsd are obtained for MSLP. Finally, for a given basin, the binary

vector and the associated set of predictors of every box are concatenated and standardized. A table, with about 600 000 and

490 000 rows, are respectively obtained for ENP and NATL.145

2.2 Methods

In this section, the description of (i) the random forest based TC tracker and the experimental set-up of the calibration/valida-

tion/test, (ii) the reconstruction of TC tracks, (iii) the evaluation metrics and (iv) the tracker used as benchmark are given.

2.2.1 Ensemble Random Forest for unbalanced data and experimental set-up

Random Forest (RF, Breiman, 2001; Hastie et al., 2009) is a supervised machine-learning algorithm based on generating150

an ensemble ("forest") of decision trees grown in parallel, referred to as bagging in machine learning. Each decision tree in

the forest separates the target variable into homogeneous groups according to a sequence of if-else decision rules applied to

the predictors. In our binary classification framework, each new separation according to a decision rule between the nodes

have been performed via maximal impurity reduction, using the Gini index as an impurity function (Breiman et al., 1984). A

random subset of data is provided for each tree (the in-the-bag dataset), and a random subset of covariates is tried at each node155

in each tree, bringing robustness to the classification. In this paper, such an implementation of RF is provided by the R package

“ranger” (Wright and Ziegler, 2017) and follows the approach developed in Malley et al. (2012) to obtain the probabilities of a

diagnosis of diabetes or appendicitis given sets of medical tests. Each classification tree gives a probability on the 0/1 class of

a datum by taking the majority vote in a terminal node. The average of the tree probability estimate gives the forest probability

estimate for class occurrence for each datum. All the hyperparameters are set to default values.160

In the case of TC tracking, an imbalanced data problem presents itself. Indeed, the class “presence of TC” is under-

represented with only 2.1% (resp. 2.6%) of the data for NATL (resp. ENP). This results in low-performing RFs due to two

phenomena: (i) successive partitioning of the data when growing the decision trees causes them to ‘see’ fewer and fewer of the

rarer class, thus fitting more and more to the majority class (“absence of TC”); and (ii) interactions between covariates can go

unlearned by the decision trees due to the sparseness of the data induced by partitioning (He and Garcia, 2009). Kuhn (2013)165

discussed resampling methods that can resolve class imbalances, but there is little consensus on the best approach. Siders et al.

(2020) compared different approaches and showed that combining the subsampling of the majority class with an ensemble of

random forest (ERF), i.e., the use of multiple random forest with different subsampling of that majority class gave the best

performance.
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In this study, the ERF approach is leveraged to tackle the class imbalance issue. The subsampling of the majority class is per-170

formed by setting the number of zeros as n times the number of ones. Several setups are tested with n ∈ {10,15,20,25,30,35}
and referred to as ’n-times’ setup and one setup is referred to as ’FULL’ without subsampling. In order to evaluate the effect of

the subsampling, for each n, 100 RFs are performed. Three experiments are set for each basin:

1. Calibration experiment: one calibration of the ERF is made using the whole data during the 1980-2021 period and all

the tracks are sought to be reconstructed from it,175

2. Validation experiment: a 6-fold cross-validation (see Fig. 2) where yellow years within each fold (35 years) are used to

calibrate the ERF. The validation is performed over tracks reconstructed for all the validation years (in blue) from the six

folds, allowing to validate ERF over the whole 1980-2021 period. This cross-validation is chosen to minimize the effect

of any potential trend and interannual variability in the TC statistics (frequency, intensity) and the changes in IBTrACS

data quality. Most of the ERF evaluations will rely on this experiment.180

3. Test experiment: from the calibration performed over the whole time period for a given basin, the TC tracks over the

other basin are reconstructed. This is done to evaluate the generalizability of ERF.

Depending on the experiment, setup and basin, the training of one RF took between 1 and 10 minutes when performed on

a laptop with an 11th Gen Intel®Core(™) i7-1165G7 @ 2.80GHz with height cores and 16 Go RAM and between 30 seconds

and less than 3 and a half minutes when performed on a computing node Intel®Xeon®CPU E5-2650 v2 @ 2.60GHz with 16185

cores and 65 Go of RAM (8 Go would be sufficient).
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Figure 2. Scheme of the ‘Validation experiment’: 6-fold cross-validation scheme over the 1980-2021. Yellow years are used for the calibration

and blue for validation. One out of six years are used for validation, making seven out of 42 per fold.

2.2.2 Track reconstruction and matching

In a given box, if RF gives probability of TC above 0.5, the location of the TCs is estimated by the position of the minimum of

MSLP in that box. From there, tracks are reconstructed from one TC location to the next. 24 hours gaps within a radius of 450

km are allowed during the reconstruction. A track is kept only if it lasts at least 24h.190

The track-matching procedure used in this study is similar to the one in (Bourdin et al., 2022). Let us consider, at time ti, a

point di of a detected track D. It is associated to the closest points of a given observed track O at each time ti that is located
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closer than 300 km (with a possibility that such a point does not exist). Points of O that have been associated with any point of

track D is denoted as OD-paired. It is composed of NOD elements. There are four possibilities:

1. NOD=0: None of the points of D has been paired to a point in O and D is considered to be a false alarm (FA),195

2. NOD>0 and all the points in OD-paired belong to the same observed track O: D is a match for O and considered a hit

(Hit),

3. NOD>0 and all the points in OD-paired belong to multiple observed tracks: D is a match for the observed track having

the largest number of paired points and considered a hit (Hit),

4. None of the points of a given O has been matched: O is a miss (Miss).200

To complete the matching, a final treatment is performed: if an observed track is paired with two or more detected tracks,

these detected tracks are merged into a single track. It happens when parts of the same observed tracks are detected separately

due to the filtering consisting in coding 0 every timesteps in the observation IBTrACS that do not reach TS intensity.

2.2.3 Evaluation metrics and analysis

The first evaluated aspect is the performance of ERF in terms of binary classification. For that, the Matthews correlation coef-205

ficient (MCC, Matthews, 1975) is used as a measure of the quality of binary (two-class) classifications. It has been introduced

by Yule (1912) and its values range from -1 to +1. A score of 1 represents a perfect prediction, 0 an average random prediction,

and -1 an inverse prediction. The MCC is particularly useful when the classes are imbalanced, as it accounts for the imbalance

in the calculation. It is similar to the Pearson correlation coefficient in its interpretation. The MCC is more informative than

other metrics in evaluating binary classification because it takes into account the balance ratios of the four categories of the210

contingency (or confusion) matrix: true positives (TP), true negatives (TN), false positives (FP), false negatives (FN) (Chicco

and Jurman, 2020). The MCC is computed from the confusion matrix (see Table A1):

MCC =
TP ×TN −FP ×FN√

(TP +FP)(TP +FN )(TN +FP)(TN +FN )
.

The second aspect evaluated is the ability of ERF to reproduce observed TC tracks. Once all tracks are labelled Hit, Miss,

and FA two detection skills metrics are defined, the Probability of Detection (POD, sometimes referred to as “Hit Rate”) and215

the False Alarm Rate (FAR): POD = Hit
Hit+Miss ; FAR = FA

FA+Hit . POD and FAR are expressed in %, and good performance

is achieved when POD is high and FAR is low.

Another aim of this paper is to provide some physical interpretation for the presence or absence of a TC given a certain

atmospherical situation. Breiman (2001) proposed to evaluate the importance of a predictor variable (or feature) Xj for pre-

dicting Y (here the probability) by adding up the weighted impurity decreases pt∆i(st, t) for all nodes t where Xj is used,220

averaged over all trees ϕm (for m = 1, ...,M ) in the forest:

Importance(Xj) =
1
M

M∑

m=1

∑

t∈ϕm

1(jt = j) [p(t)∆i(st, t)] ,
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where p(t) is the proportion Nt
N of samples reaching node t, jt denotes the identifier of the predictor used for splitting node

t and ∆i(st, t) is the impurity decrease at split st . For each one of the 20 predictors, the feature importance is then the

contribution in % of each variable to the total reduction of impurity.225

Then the idea is to determine the importance of each predictor in the prediction of every single outcome (all zeros and ones)

by RF. This is performed by computing the SHapley Additive exPlanation (or SHAP) values with the method proposed by

Lundberg et al. (2020) with an implementation for tree-based algorithms provided in the R package “treeshap” (Komisarczyk

et al., 2023). The general idea of SHAP values is to explain each outcome of RF as a sum of effect φi of each predictor Xi. The

SHAP value is φi, which stems from a concept introduced in cooperative game theory (Shapley, 1951). The idea is to determine230

the average contribution of a predictor to a specific prediction (here a probability) to every combination of predictors. This can

be written as follows:

φi =
1

# predictors
×

∑

combinations
excludingXi

marginal contribution of Xi to combination
# combinations excluding Xi of this size

.

Once the SHAP values φi for all predictors Xi and for every outcome of the RF forest are computed, SHAP-based partial

dependence plots are obtained by plotting φi against Xi. These plots will help to interpret the presence of TCs given an235

atmospherical situation described by a set of predictors Xi and explore the evolutions of TC probability according to the

evolutions of predictor Xi.

2.2.4 UZ algorithm

For comparison purposes, we use the UZ algorithm, which is a physics-based detection scheme developed in Zarzycki and

Ullrich (2017) and implemented in TempestExtremes (Ullrich et al., 2021). It was shown in Bourdin et al. (2022) to have240

good detection scores, and in particular a low False Alarm Rate. The UZ scheme is based on a 2-step procedure. The first step

is the detection step, where candidate TC points are identified. These candidates are MSLP local minima associated with an

upper-level warm core, which is measured by the geopotential thickness between 300 and 500 hPa pressure level. The second

step is the stitching step, where candidates are stitched together into tracks. The tracks must be associated with a maximum

wind speed of at least 10 m/s over at least 54h. For more technical details, the reader is redirected to (Zarzycki and Ullrich,245

2017; Ullrich et al., 2021; Bourdin et al., 2022).

3 Results

3.1 Zero class subsampling choice

As mentioned in the method section 2.2.1, random forest is subject to bias toward majority (here zero) class when applied to

unbalanced data. In this section, the results of ERF for different subsampling over the NATL basin are used to select the best250

one. Figure 3 shows the Validation experiment boxplots of MCC, POD and FAR metrics of the tracks obtained for the 100 RFs

of ERF for the validation years for different subsampling of zeros. The purple markers are the metric values for tracks obtained
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for the average of the probabilities given by the 100 RFs. The MCCs, given in the top panel of Figure 3, are quite similar for the

different sub-samplings. It ranges from a little below 0.74 for the FULL setting to a little above 0.75 for the 20-times setting,

with very little difference between the 15-times and 25-times setting.255
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Figure 3. Validation experiment boxplots of MCC (top), POD (middle) and FAR (bottom) obtained over validation years obtain for the 100

RFs of different ERF with different subsampling of zeros, for NATL basin. Violet symbol represent the metrics for the tracks obtained from

the average of the probabilities given by the 100 RFs of ERF.

POD and FAR metrics are respectively given in the middle and bottom panels of Figure 3. The POD decreases almost linearly

from 85% to 73% from the ’10-times’ to the ’FULL’ setting. Similarly, the FAR also decreases from 18% to 5%. This indicates

that a good ability of detecting TCs goes along with a high level of generating false alarm. This also explains the similar MCC

metrics for the different settings, indicating some sort of compensation between the four categories of the confusion matrix.

The subsampling ’25-times’ setup has the medium performance, with POD around 78% and FAR around 8% (see Fig. 3), is260

chosen.
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The other result drawn from Figure 3 it that the effect of the sampling of zeros given an n-times setup on MCC, POD and

FAR is very marginal considering the very narrow boxplots. It means that even though the tracks reconstructed from the average

probability obtained from the 100 RFs are used in the following of this study, a lower number of RFs would be sufficient.

3.2 ERF detection analysis265

a)

b)

c)

d)

Figure 4. ERF-based TC tracks reconstructed over validation year 2017 for the NATL for the ’25-times’ setup. a) Harvey, b) Irma, c) Jose

and d) Maria.

Figure 4 shows four example of TC tracks reconstructed over the NATL basin for the validation year 2017, from the average

probability obtained from the 100 RFs with the ’25-times’ setup. Similar reconstructed tracks for the ENP basin with similar

ERF setup are shown in Figure S1 of the supplementary material. TC tracks reconstructed from ERA5 with ERF are very

close to the observed tracks from IBTrACS even though the trajectories have very different shapes. Note the long gap in the

Harvey cyclone (Fig. 4a)) is due to the filtering consisting in selecting only the time steps reaching TS intensities (see Sect.270

2.1.1). Table 1 gives the POD and FAR metrics for the tracks reconstructed from average probability from ERF for calibration,

validation and test experiments for the ’25-times’ setup for both basins. For the validation experiment, POD are respectively of

77.5% and 77.8% for ENP and NATL basins. FAR are respectively of 8.7% and 7.9% for ENP and NATL basins. Note that for

calibration experiments, POD are above 90% and FAR is around 2% for both basins.

In the following, the statistical and physical properties of the detected tracks are investigated. Figure 5 a) shows the track275

duration histograms for the observed, ERF-detected tracks (Hit and FA) and missed tracks. ERF-based Hits have duration

distribution quite similar to IBTrACS tracks, but with substantial differences for short duration tracks (1 to 3 days). These short

duration tracks have typically short lifespan and are of lower intensity. This discrepancy is supported by the Miss tracks duration
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Table 1. POD and FAR for tracks reconstructed from average probability from ERF for calibration, validation and test experiments for the

’25-times’ setup and for UZ in %. Multi-basin refers to POD and FAR from ERF applied to both ENP and NATL basins under ’25-times’

setup discussed in Sect. 4.1. The right part of the table referred to as ’Ablation experiments’ gives the POD and FAR of ERF experiments

conducted with a reduced number of predictors discussed in Sect. 4.2

Main experiments Ablation experiments

ENP NATL ENP NATL

POD FAR POD FAR POD FAR POD FAR

Calibration 91.1 2.0 93.6 2.3 89.7 4.1 89.5 3.6

Validation 77.5 8.7 77.8 7.9 77.2 11.9 76.7 13.2

UZ 76.4 24.1 78.4 15.0 - - - -

Test
NATL (calib.) ENP (calib) NATL (calib) ENP (calib.)

76.6 15 68.4 7.8 73.5 15.5 69.3 15.5

Multi-basin

Calibration 91.8 3.1 90.9 2.4 90.5 5.5 87.8 3.1

Validation 79.2 9 74.8 5.3 78.1 13.7 70.1 8.3
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Figure 5. Statistical properties of IBTrACS (purple), ERF-detected TC tracks: Hit (blue) and FA (red) and ERF-missed tracks: Miss (green).

a) TC tacks duration histograms, b) Boxplot of ERF-based average probabilities for associated to each time steps of Hit, FA and Miss tracks.

distribution, which are mainly short durations tracks (the majority of them last between 2 and 4 days). False alarm are also of the

same durations. Differences in probabilities of TCs given by ERF associated with every time step of Hit, FA and Miss of tracks280

are then investigated. Figure 5 b) show that probabilities associated to Hit tracks (median above 0.9) are substantially different

compared to those associated to FA (median little above 0.6). This means that even if FA tracks are detected (probability

>0.5) by ERF, FA are less likely to happen than Hits. Miss tracks are associated with very low probabilities, meaning they are

completely missed by ERF.
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Figure 6. Physical properties of IBTrACS (purple), ERF-detected TC tracks: Hit (blue) and FA (red) and ERF-missed tracks: Miss (green).

a) histograms of minimum sea level pressure [in hPa], b) histograms of maximum surface wind [in m s−1] and c) the scatterplot of maximum

surface wind against minimum sea level pressure. Vertical lines indicate the TC intensity classification Saffir-Simpson Hurricane Scale

thresholds of 10 min sustained wind. Horizontal lines indicate pressure thresholds based on Klotzbach et al. (2020).

In order to investigate how these different tracks diverge in nature, the maximum wind and minimum sea level pressure285

associated to these different types of tracks are considered. Figure 6 c) shows the scatterplot of maximum surface wind against

minimum sea level pressure associated to every timestep of observed, detected (Hit and FA) and missed tracks. Figure 6 a)

and b) respectively give the associated sea level pressure and maximum wind histograms. In general, and as already pointed

out in Bourdin et al. (2022) and Dulac et al. (2024), the wind-pressure relationship in ERA5 is different from the one in the

observations (purple dots versus the rest). Detected TCs are weaker than observed ones. In particular, Hit tracks barely reach290

category 4 when considering ERA5 minimum sea level pressure, and it is even worse when considering ERA5 maximum wind

Hit tracks barely reach category 3. In addition, these figures also provide insight on FA and Miss tracks. Miss tracks are, for

the majority of them, associated in ERA5 with minimum pressure above 1005 hPa and maximum wind below 16 m s−1 which

are the TS intensity threshold. It means that these tracks are missed because ERA5 is failing to represent these TCs correctly.

Concerning FA tracks when examining Figure 6 a-c), the maximum winds and minimum pressure are located around 16 m s−1295
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and 1005 hPa pressure which are again the threshold for TS intensity. Thus, these FA tracks may be related to the uncertainty

of ERF which associates an atmospheric situation to a TC even though none has been observed.

0°N

10°N

20°N

30°N MISS

0 0.5 1

Prob.

FA

0°N
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20°N

30°N

980 1005 1030

Pmin[hPa]

100°W 80°W 60°W 40°W 20°W
0°N
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20°N

30°N

0 16 33

U10max[m/s]

100°W 80°W 60°W 40°W 20°W

Figure 7. Average probability (top row), minimum sea level pressure, Pmin [in hPa] and maximum wind U10max [in m s−1] for Miss tracks

(left column) and FA tracks (right column). Colours are saturated for Pmin and U10max.

Figure 7 shows Miss and FA tracks distributed over NATL basin and the associated ERF-based average probability, the

minimum pressure and the maximum wind. Miss tracks are distributed over the entire domain and confirm the results of

Figures 5 and 6 in terms of low probability and intensity. However, one track shows high probability, intense wind and low300

pressure and is pictured in reddish colours in the three left-hand side panels of Fig. 7. This track illustrates one small drawback

of dividing the basin into 20◦×10◦ overlapping boxes: ERF is only able to detect one TC at a time within a box. However, it

is possible that two TCs happen at the same time within one box. Figure 8 shows the IBTrACS track of the TC IRIS spotted in

Figure 7 and the stronger TC HUGO occurring at the same time. The probability, the pressure and the wind associated to the

missed TC IRIS in Figure 7 are actually those of the strong TC HUGO. The FA tracks are rather distributed at the edge of the305
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domain. In particular, they are located in areas where TCs are typically weaker: the main development region (eastern part of

the domain between 10◦N and 20 ◦N) where TC are developing, and coastal areas where they disappear. This can be related to

the uncertain aspect of these tracks that are yielded by lower probabilities.

100°W 80°W 60°W 40°W 20°W
0°N

10°N

20°N

30°N
HUGO

1989−09−11 18:00:00

1989−09−21 12:00:00

IRIS

1989−09−18 00:00:00

1989−09−20 12:00:00

980 1005 1030

Pmin[hPa]

Figure 8. Example of TC IRIS that has been missed by ERF due to the presence of a stronger TC HUGO and the associated Pmin [in hPa].

Similar figures for the ENP basin are given in Figures S2 to S5 of the supplementary material and give similar conclusions

as for the NATL basin. The major difference being that the distinction in terms of intensity between Hit and FA is less obvious310

based on ERA5. The wind-pressure relationship basin in ERA5 compared to the observation is even worse for ENP where TCs

barely reach category 2 intensity for wind and pressure scale. The median probability of Hit and FA tracks are closer (0.8 vs

0.65) and yield a higher FAR ratio. Even though the majority of FA tracks are associated with wind and pressure around 16 m

s−1 and 1005 hPa, some of them present more intense values. One hypothesis may be that these tracks have not been recorded

in IBTrACS.315

3.3 Physical interpretation

In this section, the contribution of the different predictors to the detection of TCs is analysed to provide physical insights into

the presence or absence of a TC. Figure 9 represents the boxplot of the gini-based feature importances from the 100 RFs of the

ERF for the calibration experiment and the ’25-times’ setup for both basins.

The figure shows that, for both basins, the six variables with the largest feature importance are the same: RV850sd, MSLP-320

min, UV10max, RV850max, THz300_z500max and TCWmax. These predictors are physically well-founded in explaining

the presence of a cyclone. RV850sd characterizes the singularity of the vortex within a box: the higher it is, the more the TC

vorticity stands out from the vorticity of the rest of the area within a box. It is more important than the RV850max, with is the

fourth most important variable. Then, UV10max and MSLPmin are the following most important variable. This makes sense,

since they are respectively associated to the strong surface winds and the location of the cyclone eye. The following variable are325

the TCWVmax and THz300_z500max. The former reflects the potential for rain and the moisture lifted by the TC, the latter
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Figure 9. Boxplot of gini-based feature importances of ERF for the calibration experiment and the ’25-times’ setup for a) ENP and b) NATL.

characterizes the upper-level warm core associated to the TC. Note that the order of importance is slightly different between

the basins. For instance, maximum wind is more important than sea level pressure for NATL basin, while it is the opposite for

ENP basin. It may be the result of the different wind-pressure relationships between both basins (see Fig. 6 c) and Fig. S3 c)

of the supplementary.). TCWVmax is less important in explaining the presence of TC situation for ENP basin.330

Feature importance is interesting to quantify the average contribution of a given predictor in discriminating TC from non-

TC situations. However, it would be interesting to determine the contribution for each predictor over each outcome of an

RF. This is provided by the SHAP-based partial dependency plots shown in Figure 10 for NATL basin. This figure pictures the

relationship between the six top predictors (according to feature importance) and their respective SHAP values. Note that given

the large computing time necessary for SHAP values, there are only computed for one RF among the 100 RFs of the calibration335

experiment and the ’25-times’ setup. These partial dependence plots are probably very similar for the 100 RFs given the small

dispersion of the MCC, POD and FAR performances’ metrics (see Fig. 3) and feature importance (see Fig. 9). Let us consider

the partial dependency plot in panel a) of Figure 10. On the abscissa is given the physical range of RV850sd and the associated

SHAP values on the ordinate. It shows the contribution of RV850sd given its value to the probability value of TC occurrence.

The partial dependence show a clear distinction between the “zero” and the “one” populations with marginal overlap. For340

the zeros, the SHAP values are always very close to 0 while for the ones the SHAP values always steeply increase when the

associated predictor increases (except MSLPmin, SHAP values increase when it decreases). For these six predictors, SHAP

values tend to reach at cap value after the predictors reach a certain level, and they even decrease for MSLPmin and UV10max.

This means that the contribution of these predictors in discriminating TC from non-TC situations does not change when a

certain intense value is reached. This figure also shows us that TC situations can occur for a very large range of values and,345

therefore, potentially very diverse combinations of these predictor values. This advocates for TC tracking approaches that bring

more flexibility than threshold-based approaches. Similar results can be drawn based on the Figure S6 of the supplementary
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Figure 10. Partial dependence plot for top six predictors a)-f) obtained for one of the 100 RFs of the calibration experiment and the ’25-

times’ setup for NATL basin. Contour lines indicate the density of the scatter plot between one predictor and the associated SHAP values.

Yellow and blue characterize respectively the density of the zeros (probability<0.5) and the ones (probability>0.5) population. Vertical and

horizontal lines respectively indicate the median of the predictors and the associated SHAP values for both population. The distributions of

the predictors and SHAP values are also given conditionally to both population.
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material for the ENP basin. This analysis highlights the advantages of using Random Forest (RF) over traditional trackers that

rely on sequential thresholding, as most variables exhibit nonlinear interdependencies.

3.4 Comparison with UZ350

POD and FAR for UZ in both basins are reported in Table 1. POD are quite close to those of ERF (Validation experiment)

with 1% lower POD for ENP (76.4%) and less than 1% higher (78.4%) for NATL. However, FAR, which reach 24.1% in the

ENP and 15% in the NATL amount to almost respectively three and two times the ERF scores, which not desirable. In order

to explore the similarities and differences between UZ and ERF, Figure 11 shows the number of tracks that are common for

observations (IBTrACS, IB) and tracks that are detected by ERF (Validation experiment and ’25-times’ setup) and UZ. A large355

portion of tracks of IBTrACS are detected by both UZ and ERF (335/252 for ENP/NATL basins) and some tracks are only

detected by UZ (28/31 for ENP/NATL basins) or ERF (27/22 for ENP/NATL basins). In total, Hit numbers are similar in both

methods. UZ produces a larger number of FA (115/50 for ENP/NATL basins) than ERF (41/31 for ENP/NATL basins). Finally,

there are no common FA between ERF and UZ. This means the FA appear for different reasons in the two methods.
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Figure 11. Number of tracks in common between observed tracks (IBTrACS, IB) and detected tracks from ERF and UZ for the following

case: all three datasets, two out of the three and tracks specific to a dataset for the Validation experiment and ’25-times’ setup. a) ENP and b)

NATL basins.

4 Sensitivity test360

4.1 Need for regional tracker

In this study, ERF has been applied separately for each basin, which is uncommon in the literature in which, usually, the

tracking algorithm is applied over multiple basins (Bourdin et al., 2022; Accarino et al., 2023). This has been done in order

to test the spatial generalizability of the ERF approach. This ability of ERF is based on the test experiment, which consists

in reconstructing the tracks of the ENP basin using the ERF fitted for the calibration experiment (’25-times’) setup for the365

NATL basin and vice versa (see sect. 2.2.1). Table 1 reports the FAR and POD for these test experiments. POD and FAR are
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respectively 76.6% and 15% for ENP basin and 68.4% and 7.8% for NATL. In the case of ENP, the test POD is similar to

the validation one, while FAR is degraded. It is the opposite for NATL. This shows a certain specificity of the TC tracking

according to the basin, which may stem from different factors. For instance, the latitudinal distribution of the cyclones are

quite different between both basin: for ENP basin, TC tracks are mostly located between 10◦N and 20◦N (see Fig. 1) while370

they are distributed all over the basin for NATL. Thus, this may involve different processes between TC in NATL and ENP.

Differences of feature importance in Figure 9 between both basin may be an illustration of that. This can also be due to the

differences of the quality of TC representation between both basin in ERA5. For example, differences in the wind-pressure

relationship between both basin illustrate this quality difference (see Fig. 6 c) and Fig. S3 c)).

In order to highlight the need for regional tracker, ERF has been carried out under the ’25-times’ setup for the data pooled375

from both basins, referred to as ’Multi-basin’. Table 1 gives the POD and FAR for calibration and validation experiments.

Compared to basin-specific experiments, the performances are close, with slightly better POD and slightly worse FAR for ENP

basin. In contrast, it is the opposite for NATL basin with larger differences. The better performance for the ENP basin can

be explained by the higher weight it holds on the ERF training, given its larger data size (see Sect. 2.1.3) and the small total

number of TCs. The results remain nevertheless better than UZ (see Tab. 1). It is therefore up to the user to decide if either380

one ERF for all basins or one specific ERF for each basin is necessary by considering if the loss of performance of Multi-basin

ERF compared to the regional ERF is acceptable or not.

4.2 Ablation experiment

An ablation experiment is conducted in order to get a more parsimonious ERF by reducing the number of predictors. Based

on the feature importance (Fig. 9), the top six predictors are kept (see Sect. 3.3). Such a model is expected to generalize better,385

have a smoother behaviour when looking at partial dependencies, and be potentially more intrinsically interpretable.

In this section, the Calibration and Validation (for regional and Multi-basin) and Test (for regional) experiments have been

performed under the ’25-times’ setup. The right part of Tab. 1 gives the POD and FAR of all experiment performed with a

reduced number of predictors. For all experiments, POD are only slightly reduced but remain very close to the POD without the

ablation. Interestingly, FAR are more strongly degraded (sometimes doubled) with the ablation. This means that predictors with390

lower feature importance control FA, indicating us to be cautious when removing predictors. SHAP-based partial dependency

plot for validation experiment are given in Figure S7 and S8 for the Validation experiment and both basins. In general, these

figures are similar to the one of ERF performed with the full set of predictors. The only difference is the better distinction

between “zero” and “one” populations, which can result from the higher FA rate.

5 Summary and perspectives395

In this study, we used random forest for tracking tropical cyclones in the eastern North Pacific and North Atlantic basins

over the 1980-2021 period by associating atmospheric situations described by five climatic predictors extracted from ERA5

to observational IBTrACS records of tropical cyclones. More precisely, the tracking problem in this paper was equivalent to
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performing binary classification over imbalanced data containing substantially more TC-free situations than TC. This imbal-

ance problem was addressed by combining an ensemble of random forests with the subsampling of TC-free situations. Before400

applying this method, the amount of data fed to it was reduced by considering four statistics of each predictor instead of its

whole field (minimum, mean, maximum and standard deviation). In addition, basins were patched by overlapping boxes. In

this way, our approach was able to learn the characteristics related to the presence of the TC inside a box, regardless of its

position, and allowed us to detect cyclones occurring at the same time within one basin or in both basins (for the multi-basin

experiments).405

Our data-driven ERF tracker showed good performances for detecting TC tracks: In validation, POD/FAR of 77.5%/8.7%

and 77.8%/7.9% were obtained for the ENP and the NATL basins respectively. Compared to the physics-based UZ tracker,

used as benchmark in this study, ERF showed similar POD but better (i.e., lower) FAR. UZ was chosen because it was the

most accurate among the physics-based trackers (Bourdin et al., 2022), and it was also better than other data-driven trackers

(e.g., the deep learning approach in Accarino et al., 2023). ERF has the advantage to require low computing power (see Sect.410

2.2.1). Tracks detected by ERF have similar duration frequencies to IBTrACS tracks, except for short (2 to 4 days) and lower

intensity tracks (see Figs. 5 and 6). Missed and false alarm tracks are mainly short tracks (1 to 3 days). Detected TCs have

weaker intensity in ERA5 than in IBTrACS, due to ERA5 systematically under-estimating TC intensity. So much so that it is

likely that some cyclones are missing because they were reanalysed too weak to be detected. False alarm tracks are very close

to the tropical storm intensity thresholds and thus illustrate the uncertainties of ERF. These tracks are located in developing415

and landfall areas of cyclones, where their signal is less clear and more uncertain.

For both basins, the six most important variables for detecting the presence of TCs are the same and characterize the main

physical and thermodynamic properties of TC. The order of importance differs between the basins, highlighting potential

specificities in the TC patterns and processes depending on the basin. Relying on the SHAP-based partial dependency plots,

we showed that TC can be detected through potentially very diverse combinations of predictor values, which brings more420

flexibility than physics-based approaches that need user-prescribed thresholds.

Two aspects of our ERF trackers were then tested: the spatial generalizability of ERF, and the possibility to reduce the

number of predictors. When the tracking was performed in one basin based on an ERF calibration performed on the other basin

(resp. on both basins): (i) for ENP the POD is similar (resp. improved) and the FAR is degraded (resp. similar) and (ii) for

NATL the POD is degraded (resp. degraded) and the FAR is similar (resp. improved). This shows an overall good ability for425

spatial generalizability of ERF while showing potential need for regional tracking that can stem from the specificities of TC

tracks and the differences of ERA5 quality between both basins. The ablation experiment showed that reducing the number of

predictors according to their feature importance does not change (or only very marginally) the POD, but strongly degrades the

FAR for all experiments. This showed a certain control on false alarm of the removed predictors.

As future work, the next focus will be on extending the tracking for all the basins at global scale. Some tests will also be430

necessary to choose the minimum number of RF (lower than 100) and to determine which predictors control FAs and which

predictors to remove without degrading the performance of the tracker. From there, the major challenge will be to apply ERF to

Earth System Models from the Coupled Model Intercomparison Project phase 6 (CMIP6, Eyring et al., 2016) and, in particular,
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to the subset of CMIP6 simulations from the High Resolution Model Intercomparison Project (HighResMIP, Haarsma et al.,

2016). Indeed, HighResMIP simulations are better in simulating TCs and their tracking has already been done with other435

physics-based trackers (Roberts et al., 2020).

The primary target will be to apply the ERF tracker calibrated from ERA5 directly to HighResMIP simulations without

any new ERF calibration. This raises the question of the transferability of ERF calibrated from ERA5 to the models. This

issue is two-fold: first, is there a need for bias correction? And second, will ERF be transferable to future climate projections

given the climate change signal? The first question will deal with the possibility of the mismatch between the models and440

ERA5, preventing ERF to detect cyclones. The second one will address the possibility that the climate change will induce

non-stationarity strong enough to prevent ERF from detecting cyclones.

Multiple applications can be foreseen. For instance, we will be able to study the statistical and physical properties of TCs

detected under climate change. More precisely, we will be able to compare them to the cyclones detected by physical-based

trackers and evaluate the complementary added-value brought by the flexility of ERF for detecting cyclones. Furthermore,445

thanks to the partial dependency plots, the differences in the relation between the predictors and the TC presence probability

between the models and ERA5 will be evaluated. Another application can be dedicated to climate change attribution studies

by comparing the properties of TCs in simulations realized under controlled emission scenarios and future climate scenarios.

Ultimately, we would like to make our method widely available. Hence, efforts will be made to make it easy-to-use through

an open-source software.450

Data availability. ERA5 data are available on the Copernicus Climate Change Service Climate Data Store (CDS, https://cds.climate.copernicus.

eu/datasets/reanalysis-era5-pressure-levels?tab=download, last access: April 2024). The IBTrACS database is provided by NOAA, National

Centers for Environmental Information, https://www.ncei.noaa.gov/products/international-best-track-archive (last access: April 2024)

Appendix A: Tables

Table A1. Confusion Matrix

Prediction

0 1

Observations
0 TN FP

1 FN TP

true positives (TP), true negatives (TN),

false positives (FP), false negatives (FN)
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